Search

Wednesday, 19 July 2023

Best practices for organizing PySpark code with SQL usage

Example illustrating the best practices for organizing PySpark code with extensive SQL usage:

In this example, the SQL code is stored in separate SQL files within the sql/ directory. The data_preprocessing.sql and feature_engineering.sql files encapsulate the respective SQL operations.

The feature_engineering.sql file imports common functions from common_functions.sql within the utils/ subdirectory. This approach promotes code reusability and separates the common functions from the main SQL code.

The main.py script reads the SQL files and executes the SQL code using spark.sql(). By following this approach, you maintain a clean separation between the PySpark code and SQL logic, making it easier to manage and maintain your project.

Directory Structure:

project/

├── main.py

└── sql/

    ├── data_preprocessing.sql

    ├── feature_engineering.sql

    └── utils/

        ├── common_functions.sql

        └── feature_functions.sql


data_preprocessing.sql:

-- data_preprocessing.sql

-- Define the SQL operations for data preprocessing

CREATE OR REPLACE TEMPORARY VIEW cleaned_data AS

SELECT

    column1,

    column2,

    -- Perform data preprocessing operations here

FROM

    input_data;


feature_engineering.sql:

-- feature_engineering.sql

-- Import common functions

:load sql/utils/common_functions.sql

-- Define the SQL operations for feature engineering

CREATE OR REPLACE TEMPORARY VIEW transformed_data AS

SELECT

    column1,

    column2,

    -- Perform feature engineering operations here

    -- Example using a custom feature function

    feature_function(column1) AS new_feature

FROM

    cleaned_data;


common_functions.sql (in sql/utils/):

-- common_functions.sql

-- Define common SQL functions used across multiple SQL files

CREATE OR REPLACE FUNCTION feature_function(column)

RETURNS feature

BEGIN

    -- Implement the feature function logic here

    -- ...

    RETURN feature_value;

END;


main.py:

from pyspark.sql import SparkSession

# Create SparkSession

spark = SparkSession.builder.getOrCreate()

# Load input data

input_data = spark.read.csv("data.csv", header=True, inferSchema=True)

input_data.createOrReplaceTempView("input_data")

# Load and execute SQL scripts

with open("sql/data_preprocessing.sql") as f:

    data_preprocessing_sql = f.read()

spark.sql(data_preprocessing_sql)

with open("sql/feature_engineering.sql") as f:

    feature_engineering_sql = f.read()

spark.sql(feature_engineering_sql)

# Retrieve the transformed data

transformed_data = spark.table("transformed_data")

# Perform further operations on transformed_data or train models, etc.