Below is an example of how to create and drop a UDF in Python using Databricks:
Creating a UDF:
from pyspark.sql.functions import udffrom pyspark.sql.types import IntegerType# Define the function you want to use in your UDFdef multiply_by_two(x):return x * 2# Create the UDF using the function you definedmultiply_by_two_udf = udf(multiply_by_two, IntegerType())# Register the UDF so it can be used in your Spark SQL queriesspark.udf.register("multiply_by_two", multiply_by_two_udf)
Dropping a UDF:
# Unregister the UDF so it can no longer be used in your Spark SQL queriesspark.catalog.dropTempView("multiply_by_two")
Note that in the above examples, we're using spark to access the SparkSession object, which is the entry point to using Spark functionality. If you're running this code in a Databricks notebook, the SparkSession object is automatically created for you.